Prediction of the kind of sprouts of Cruciferae family based on artificial neural network analysis

To chci

The aim of this work was to show that artificial neural networks (ANNs) are a convenient tool for predicting the kind of sprouts originated from Cruciferae family. For this purpose, the known contents of bioactive compounds of small radish, radish, white mustard, and rapeseed seeds and sprouts were used for the prediction of the kind of a specific sprout. The celý popis

Uloženo v:

Podrobná bibliografie

Hlavní autor
Adam Buciński
Další autoři
Henryk Zieliński
Halina Kozłowska
Typ dokumentu
Články
Fyzický popis
5 il.
Publikováno v
Czech Journal of Food Sciences. -- ISSN 1212-1800. -- Roč. 25, č. 4 (2007), s. 189-194
Témata
Popis jednotky
2 grafy, 3 tabulky
Bibliografie
Bibliografie na s. 193-194 (23 zázn.)

:


MARC

LEADER 00000naa a2200000 a 4500
001 czpb000100820
FMT A N
LDR 0 0 |0 0naa a22 a 4500 
003 CZ PrUZP
005 20070801101256.0
007 ta
008 070801s2007 xr ad f b 000 0 eng d
040 |a ABA009  |b cze 
072 7 |a 635  |x Zahrádkářství  |2 Konspekt  |9 24 
080 |a 635.1/.8  |2 MRF-sel 
100 1 |a Buciński, Adam,  |u Polish Academy of Sciences, Institute of Animal Reproduction and Food Research, Olsztyn, PL  |4 aut 
245 1 0 |a Prediction of the kind of sprouts of Cruciferae family based on artificial neural network analysis /  |c Adam Buciński, Henryk Zieliński, Halina Kozłowska 
300 |b 5 il. 
500 |a 2 grafy, 3 tabulky 
504 |a Bibliografie na s. 193-194 (23 zázn.) 
520 3 |a The aim of this work was to show that artificial neural networks (ANNs) are a convenient tool for predicting the kind of sprouts originated from Cruciferae family. For this purpose, the known contents of bioactive compounds of small radish, radish, white mustard, and rapeseed seeds and sprouts were used for the prediction of the kind of a specific sprout. The input data reflected the contents of the following compounds in cruciferous seeds in the course of germination: soluble proteins (SP), ascorbic acid (AH2), total glucosinolates (GLS), reduced glutathione (GSH), and tocopherols (α-T, β-T, γ-T, δ-T), expressed in their biological activity. The ANN used was trained on the learning set. The ability of the utilised ANN to generalise the gained knowledge based on the learning set was verified by the validating and testing sets. The trained and validated ANN was able to classify, with complete accuracy, the kind of sprouts out of the four kinds used. It can be concluded that ANN can be used as a useful tool for determining the identity of cruciferous seeds and sprouts based on the determined levels of their bioactive components.  |9 eng 
650 0 9 |a BRASSICACEAE  |2 agrovoc 
650 0 9 |a OFFSHOOTS  |2 agrovoc 
650 0 9 |a SEEDS  |2 agrovoc 
650 0 9 |a GLUCOSINOLATES  |2 agrovoc 
650 0 9 |a TOCOPHEROLS  |2 agrovoc 
650 0 9 |a GLUTATHIONE  |2 agrovoc 
650 0 9 |a ASCORBIC ACID  |2 agrovoc 
650 0 9 |a RADISHES  |2 agrovoc 
650 0 9 |a SINAPIS ALBA  |2 agrovoc 
650 0 9 |a BRASSICA NAPUS  |2 agrovoc 
650 0 9 |a RAPHANUS SATIVUS  |2 agrovoc 
650 0 9 |a DATA ANALYSIS  |2 agrovoc 
653 0 |a bioaktivní látky 
653 0 |a biologická aktivita 
653 0 |a řepka olejná 
653 0 |a hořčice bílá 
653 0 |a umělá neurální síť 
650 0 7 |a Cruciferae  |2 agrovoc 
650 0 7 |a výhony  |2 agrovoc 
650 0 7 |a semena  |2 agrovoc 
650 0 7 |a glukosinoláty  |2 agrovoc 
650 0 7 |a tokoferoly  |2 agrovoc 
650 0 7 |a glutathion  |2 agrovoc 
650 0 7 |a kyselina askorbová  |2 agrovoc 
650 0 7 |a ředkve  |2 agrovoc 
650 0 7 |a Sinapis alba  |2 agrovoc 
650 0 7 |a Brassica napus  |2 agrovoc 
650 0 7 |a Raphanus sativus  |2 agrovoc 
650 0 7 |a analýza dat  |2 agrovoc 
700 1 |a Zieliński, Henryk,  |u Polish academy od sciences, Institut od animal reproduction and food research, Olsztyn, PL  |4 aut 
700 1 |a Kozłowska, Halina,  |u Polish academy od sciences, Institut od animal reproduction and food research, Olsztyn, PL  |4 aut 
773 0 |t Czech Journal of Food Sciences  |x 1212-1800  |g Roč. 25, č. 4 (2007), s. 189-194  |q 25:4  |9 2007 
LKR |a ITM  |b 97096  |l UZP50  |y 2007 
CAS |a a 
SIF |z Old  |d 20070801 
910 |a ABA009  |t rs